mirror of https://github.com/velour/catbase.git
186 lines
4.1 KiB
Go
186 lines
4.1 KiB
Go
package main
|
|
|
|
import (
|
|
"encoding/json"
|
|
"flag"
|
|
"fmt"
|
|
"io/ioutil"
|
|
"os"
|
|
"path/filepath"
|
|
"regexp"
|
|
"strings"
|
|
|
|
"github.com/cdipaolo/goml/base"
|
|
"github.com/cdipaolo/goml/text"
|
|
"github.com/rs/zerolog"
|
|
"github.com/rs/zerolog/log"
|
|
)
|
|
|
|
type logEntry struct {
|
|
Who string
|
|
Author string
|
|
Body string
|
|
Emojy string
|
|
}
|
|
|
|
type logs []logEntry
|
|
|
|
type emojySet map[string]bool
|
|
|
|
type MetaData struct {
|
|
NClasses uint8
|
|
ClassList []string
|
|
}
|
|
|
|
func main() {
|
|
log.Logger = log.With().Caller().Stack().Logger()
|
|
log.Logger = log.Logger.Output(zerolog.ConsoleWriter{Out: os.Stderr})
|
|
|
|
logDir := flag.String("path", "", "path to logs")
|
|
outFile := flag.String("out", "emojy.model", "path to store model")
|
|
|
|
flag.Parse()
|
|
if *logDir == "" {
|
|
fmt.Fprintf(os.Stderr, "You must provide a log path.\n\n")
|
|
flag.Usage()
|
|
os.Exit(1)
|
|
}
|
|
|
|
logs, classes := prepLogs(*logDir)
|
|
model, meta := bayes(logs, classes)
|
|
err := model.PersistToFile(*outFile)
|
|
if err != nil {
|
|
log.Fatal().Err(err).Msgf("failed to save model")
|
|
}
|
|
metaJSON, err := json.Marshal(meta)
|
|
if err != nil {
|
|
log.Fatal().Err(err).Msgf("failed to save model")
|
|
}
|
|
err = ioutil.WriteFile(*outFile+".json", metaJSON, 0666)
|
|
if err != nil {
|
|
log.Fatal().Err(err).Msgf("failed to save model")
|
|
}
|
|
}
|
|
|
|
var re = regexp.MustCompile(`(?i)^\[.+\] <(?P<Who>[[:punct:][:alnum:]]+)> reacted to (?P<Author>[[:punct:][:alnum:]]+): (?P<Body>.+) with :(?P<Emojy>[[:punct:][:alnum:]]+):$`)
|
|
|
|
func prepLogs(path string) (logs, emojySet) {
|
|
entries := logs{}
|
|
emojies := emojySet{}
|
|
err := filepath.Walk(path, func(path string, info os.FileInfo, err error) error {
|
|
if err != nil {
|
|
return err
|
|
}
|
|
if info.IsDir() {
|
|
return nil
|
|
}
|
|
tmp, err := ioutil.ReadFile(path)
|
|
content := string(tmp)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
for _, line := range strings.Split(content, "\n") {
|
|
if strings.Contains(line, "unknown event") {
|
|
continue
|
|
}
|
|
if !re.MatchString(line) {
|
|
continue
|
|
}
|
|
entry := parseEntry(line)
|
|
emojies[entry.Emojy] = true
|
|
log.Debug().
|
|
Interface("entry", entry).
|
|
Str("line", line).
|
|
Msgf("Found emojy reaction entry")
|
|
entries = append(entries, entry)
|
|
}
|
|
return nil
|
|
})
|
|
if err != nil {
|
|
log.Fatal().Msgf("Error walking: %s", err)
|
|
}
|
|
return entries, emojies
|
|
}
|
|
|
|
func parseEntry(content string) logEntry {
|
|
out := logEntry{}
|
|
subs := re.FindStringSubmatch(content)
|
|
if len(subs) == 0 {
|
|
return out
|
|
}
|
|
for i, n := range re.SubexpNames() {
|
|
switch n {
|
|
case "Who":
|
|
out.Who = subs[i]
|
|
case "Author":
|
|
out.Author = subs[i]
|
|
case "Body":
|
|
out.Body = subs[i]
|
|
case "Emojy":
|
|
out.Emojy = subs[i]
|
|
}
|
|
}
|
|
return out
|
|
}
|
|
|
|
func bayes(logs logs, classes emojySet) (*text.NaiveBayes, MetaData) {
|
|
// create the channel of data and errors
|
|
stream := make(chan base.TextDatapoint, 100)
|
|
errors := make(chan error)
|
|
|
|
nClasses := uint8(len(classes))
|
|
|
|
classMap := map[string]uint8{}
|
|
classList := []string{}
|
|
for k, _ := range classes {
|
|
classList = append(classList, k)
|
|
classMap[k] = uint8(len(classList) - 1)
|
|
}
|
|
|
|
log.Debug().Strs("classList", classList).Interface("classMap", classMap).Int("nLogs", len(logs)).Msgf("about to train")
|
|
|
|
// make a new NaiveBayes model with
|
|
// 2 classes expected (classes in
|
|
// datapoints will now expect {0,1}.
|
|
// in general, given n as the classes
|
|
// variable, the model will expect
|
|
// datapoint classes in {0,...,n-1})
|
|
//
|
|
// Note that the model is filtering
|
|
// the text to omit anything except
|
|
// words and numbers (and spaces
|
|
// obviously)
|
|
model := text.NewNaiveBayes(stream, nClasses, base.OnlyWordsAndNumbers)
|
|
go model.OnlineLearn(errors)
|
|
|
|
for _, l := range logs {
|
|
stream <- base.TextDatapoint{
|
|
X: l.Body,
|
|
Y: classMap[l.Emojy],
|
|
}
|
|
}
|
|
|
|
close(stream)
|
|
for {
|
|
err := <-errors
|
|
if err != nil {
|
|
log.Error().Err(err).Msg("Error passed")
|
|
} else {
|
|
// training is done!
|
|
break
|
|
}
|
|
}
|
|
// now you can predict like normal
|
|
in := "Should work properly once that number of documents increases."
|
|
class := model.Predict(in) // 0
|
|
emojy := classList[class]
|
|
log.Debug().Msgf("Class prediction for %s: %v", in, emojy)
|
|
|
|
meta := MetaData{
|
|
NClasses: nClasses,
|
|
ClassList: classList,
|
|
}
|
|
|
|
return model, meta
|
|
}
|