mirror of https://github.com/velour/catbase.git
tldr: use gpt
This commit is contained in:
parent
494c9e87d6
commit
1a066ce979
|
@ -1,8 +1,14 @@
|
|||
package tldr
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"context"
|
||||
"fmt"
|
||||
"github.com/andrewstuart/openai"
|
||||
"github.com/velour/catbase/config"
|
||||
"regexp"
|
||||
"strings"
|
||||
"text/template"
|
||||
"time"
|
||||
|
||||
"github.com/velour/catbase/bot"
|
||||
|
@ -14,7 +20,8 @@ import (
|
|||
)
|
||||
|
||||
type TLDRPlugin struct {
|
||||
bot bot.Bot
|
||||
b bot.Bot
|
||||
c *config.Config
|
||||
history []history
|
||||
index int
|
||||
lastRequest time.Time
|
||||
|
@ -28,100 +35,52 @@ type history struct {
|
|||
|
||||
func New(b bot.Bot) *TLDRPlugin {
|
||||
plugin := &TLDRPlugin{
|
||||
bot: b,
|
||||
b: b,
|
||||
c: b.Config(),
|
||||
history: []history{},
|
||||
index: 0,
|
||||
lastRequest: time.Now().Add(-24 * time.Hour),
|
||||
}
|
||||
b.Register(plugin, bot.Message, plugin.message)
|
||||
b.Register(plugin, bot.Help, plugin.help)
|
||||
plugin.register()
|
||||
return plugin
|
||||
}
|
||||
|
||||
func (p *TLDRPlugin) message(c bot.Connector, kind bot.Kind, message msg.Message, args ...any) bool {
|
||||
timeLimit := time.Duration(p.bot.Config().GetInt("TLDR.HourLimit", 1))
|
||||
lowercaseMessage := strings.ToLower(message.Body)
|
||||
if lowercaseMessage == "tl;dr" && p.lastRequest.After(time.Now().Add(-timeLimit*time.Hour)) {
|
||||
p.bot.Send(c, bot.Message, message.Channel, "Slow down, cowboy. Read that tiny backlog.")
|
||||
return true
|
||||
} else if lowercaseMessage == "tl;dr" {
|
||||
p.lastRequest = time.Now()
|
||||
nTopics := p.bot.Config().GetInt("TLDR.Topics", 5)
|
||||
|
||||
stopWordSlice := p.bot.Config().GetArray("TLDR.StopWords", []string{})
|
||||
if len(stopWordSlice) == 0 {
|
||||
stopWordSlice = THESE_ARE_NOT_THE_WORDS_YOU_ARE_LOOKING_FOR
|
||||
p.bot.Config().SetArray("TLDR.StopWords", stopWordSlice)
|
||||
}
|
||||
|
||||
vectoriser := nlp.NewCountVectoriser(stopWordSlice...)
|
||||
lda := nlp.NewLatentDirichletAllocation(nTopics)
|
||||
pipeline := nlp.NewPipeline(vectoriser, lda)
|
||||
docsOverTopics, err := pipeline.FitTransform(p.getTopics()...)
|
||||
|
||||
if err != nil {
|
||||
log.Error().Err(err)
|
||||
return false
|
||||
}
|
||||
|
||||
bestScores := make([][]float64, nTopics)
|
||||
bestDocs := make([][]history, nTopics)
|
||||
|
||||
supportingDocs := p.bot.Config().GetInt("TLDR.Support", 3)
|
||||
for i := 0; i < nTopics; i++ {
|
||||
bestScores[i] = make([]float64, supportingDocs)
|
||||
bestDocs[i] = make([]history, supportingDocs)
|
||||
}
|
||||
|
||||
dr, dc := docsOverTopics.Dims()
|
||||
for topic := 0; topic < dr; topic++ {
|
||||
minScore, minIndex := min(bestScores[topic])
|
||||
|
||||
for doc := 0; doc < dc; doc++ {
|
||||
score := docsOverTopics.At(topic, doc)
|
||||
if score > minScore {
|
||||
bestScores[topic][minIndex] = score
|
||||
bestDocs[topic][minIndex] = p.history[doc]
|
||||
minScore, minIndex = min(bestScores[topic])
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
topicsOverWords := lda.Components()
|
||||
tr, tc := topicsOverWords.Dims()
|
||||
|
||||
vocab := make([]string, len(vectoriser.Vocabulary))
|
||||
for k, v := range vectoriser.Vocabulary {
|
||||
vocab[v] = k
|
||||
}
|
||||
|
||||
response := "Here you go captain 'too good to read backlog':\n"
|
||||
|
||||
for topic := 0; topic < tr; topic++ {
|
||||
bestScore := -1.
|
||||
bestTopic := ""
|
||||
for word := 0; word < tc; word++ {
|
||||
score := topicsOverWords.At(topic, word)
|
||||
if score > bestScore {
|
||||
bestScore = score
|
||||
bestTopic = vocab[word]
|
||||
}
|
||||
}
|
||||
response += fmt.Sprintf("\n*Topic #%d: %s*\n", topic, bestTopic)
|
||||
for i := range bestDocs[topic] {
|
||||
response += fmt.Sprintf("<%s>%s\n", bestDocs[topic][i].user, bestDocs[topic][i].body)
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
p.bot.Send(c, bot.Message, message.Channel, response)
|
||||
func (p *TLDRPlugin) register() {
|
||||
p.b.RegisterTable(p, bot.HandlerTable{
|
||||
{
|
||||
Kind: bot.Message, IsCmd: true,
|
||||
Regex: regexp.MustCompile(`old tl;dr`),
|
||||
HelpText: "Get a rather inaccurate summary of the channel",
|
||||
Handler: p.tldrCmd,
|
||||
},
|
||||
{
|
||||
Kind: bot.Message, IsCmd: true,
|
||||
Regex: regexp.MustCompile(`tl;dr`),
|
||||
HelpText: "Get a summary of the channel",
|
||||
Handler: p.betterTLDR,
|
||||
},
|
||||
{
|
||||
Kind: bot.Message, IsCmd: false,
|
||||
Regex: regexp.MustCompile(`.*`),
|
||||
Handler: p.record,
|
||||
},
|
||||
})
|
||||
p.b.Register(p, bot.Help, p.help)
|
||||
}
|
||||
|
||||
func (p *TLDRPlugin) tldrCmd(r bot.Request) bool {
|
||||
timeLimit := time.Duration(p.b.Config().GetInt("TLDR.HourLimit", 1))
|
||||
if p.lastRequest.After(time.Now().Add(-timeLimit * time.Hour)) {
|
||||
p.b.Send(r.Conn, bot.Message, r.Msg.Channel, "Slow down, cowboy. Read that tiny backlog.")
|
||||
return true
|
||||
}
|
||||
return false
|
||||
}
|
||||
|
||||
func (p *TLDRPlugin) record(r bot.Request) bool {
|
||||
hist := history{
|
||||
body: lowercaseMessage,
|
||||
user: message.User.Name,
|
||||
body: strings.ToLower(r.Msg.Body),
|
||||
user: r.Msg.User.Name,
|
||||
timestamp: time.Now(),
|
||||
}
|
||||
p.addHistory(hist)
|
||||
|
@ -129,11 +88,86 @@ func (p *TLDRPlugin) message(c bot.Connector, kind bot.Kind, message msg.Message
|
|||
return false
|
||||
}
|
||||
|
||||
func (p *TLDRPlugin) oldTLDR(r bot.Request) bool {
|
||||
p.lastRequest = time.Now()
|
||||
nTopics := p.b.Config().GetInt("TLDR.Topics", 5)
|
||||
|
||||
stopWordSlice := p.b.Config().GetArray("TLDR.StopWords", []string{})
|
||||
if len(stopWordSlice) == 0 {
|
||||
stopWordSlice = THESE_ARE_NOT_THE_WORDS_YOU_ARE_LOOKING_FOR
|
||||
p.b.Config().SetArray("TLDR.StopWords", stopWordSlice)
|
||||
}
|
||||
|
||||
vectoriser := nlp.NewCountVectoriser(stopWordSlice...)
|
||||
lda := nlp.NewLatentDirichletAllocation(nTopics)
|
||||
pipeline := nlp.NewPipeline(vectoriser, lda)
|
||||
docsOverTopics, err := pipeline.FitTransform(p.getTopics()...)
|
||||
|
||||
if err != nil {
|
||||
log.Error().Err(err)
|
||||
return false
|
||||
}
|
||||
|
||||
bestScores := make([][]float64, nTopics)
|
||||
bestDocs := make([][]history, nTopics)
|
||||
|
||||
supportingDocs := p.b.Config().GetInt("TLDR.Support", 3)
|
||||
for i := 0; i < nTopics; i++ {
|
||||
bestScores[i] = make([]float64, supportingDocs)
|
||||
bestDocs[i] = make([]history, supportingDocs)
|
||||
}
|
||||
|
||||
dr, dc := docsOverTopics.Dims()
|
||||
for topic := 0; topic < dr; topic++ {
|
||||
minScore, minIndex := min(bestScores[topic])
|
||||
|
||||
for doc := 0; doc < dc; doc++ {
|
||||
score := docsOverTopics.At(topic, doc)
|
||||
if score > minScore {
|
||||
bestScores[topic][minIndex] = score
|
||||
bestDocs[topic][minIndex] = p.history[doc]
|
||||
minScore, minIndex = min(bestScores[topic])
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
topicsOverWords := lda.Components()
|
||||
tr, tc := topicsOverWords.Dims()
|
||||
|
||||
vocab := make([]string, len(vectoriser.Vocabulary))
|
||||
for k, v := range vectoriser.Vocabulary {
|
||||
vocab[v] = k
|
||||
}
|
||||
|
||||
response := "Here you go captain 'too good to read backlog':\n"
|
||||
|
||||
for topic := 0; topic < tr; topic++ {
|
||||
bestScore := -1.
|
||||
bestTopic := ""
|
||||
for word := 0; word < tc; word++ {
|
||||
score := topicsOverWords.At(topic, word)
|
||||
if score > bestScore {
|
||||
bestScore = score
|
||||
bestTopic = vocab[word]
|
||||
}
|
||||
}
|
||||
response += fmt.Sprintf("\n*Topic #%d: %s*\n", topic, bestTopic)
|
||||
for i := range bestDocs[topic] {
|
||||
response += fmt.Sprintf("<%s>%s\n", bestDocs[topic][i].user, bestDocs[topic][i].body)
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
p.b.Send(r.Conn, bot.Message, r.Msg.Channel, response)
|
||||
|
||||
return true
|
||||
}
|
||||
|
||||
func (p *TLDRPlugin) addHistory(hist history) {
|
||||
p.history = append(p.history, hist)
|
||||
sz := len(p.history)
|
||||
max := p.bot.Config().GetInt("TLDR.HistorySize", 1000)
|
||||
keepHrs := time.Duration(p.bot.Config().GetInt("TLDR.KeepHours", 24))
|
||||
max := p.b.Config().GetInt("TLDR.HistorySize", 1000)
|
||||
keepHrs := time.Duration(p.b.Config().GetInt("TLDR.KeepHours", 24))
|
||||
// Clamp the size of the history
|
||||
if sz > max {
|
||||
p.history = p.history[len(p.history)-max:]
|
||||
|
@ -163,7 +197,7 @@ func (p *TLDRPlugin) getTopics() []string {
|
|||
|
||||
// Help responds to help requests. Every plugin must implement a help function.
|
||||
func (p *TLDRPlugin) help(c bot.Connector, kind bot.Kind, message msg.Message, args ...any) bool {
|
||||
p.bot.Send(c, bot.Message, message.Channel, "tl;dr")
|
||||
p.b.Send(c, bot.Message, message.Channel, "tl;dr")
|
||||
return true
|
||||
}
|
||||
|
||||
|
@ -178,3 +212,41 @@ func min(slice []float64) (float64, int) {
|
|||
}
|
||||
return minVal, minIndex
|
||||
}
|
||||
|
||||
func (p *TLDRPlugin) betterTLDR(r bot.Request) bool {
|
||||
c, err := p.getClient()
|
||||
if err != nil {
|
||||
p.b.Send(r.Conn, bot.Message, r.Msg.Channel, "Couldn't fetch an OpenAI client")
|
||||
return true
|
||||
}
|
||||
promptConfig := p.c.Get("tldr.prompttemplate", "Summarize the following conversation:\n")
|
||||
promptTpl := template.Must(template.New("gptprompt").Parse(promptConfig))
|
||||
prompt := bytes.Buffer{}
|
||||
data := p.c.GetMap("tldr.promptdata", map[string]string{})
|
||||
promptTpl.Execute(&prompt, data)
|
||||
backlog := ""
|
||||
for _, h := range p.history {
|
||||
backlog += fmt.Sprintf("%s: %s\n", h.user, h.body)
|
||||
}
|
||||
sess := c.NewChatSession(prompt.String())
|
||||
completion, err := sess.Complete(context.TODO(), backlog)
|
||||
if err != nil {
|
||||
p.b.Send(r.Conn, bot.Message, r.Msg.Channel, "Couldn't run the OpenAI request")
|
||||
return true
|
||||
}
|
||||
log.Debug().
|
||||
Str("prompt", prompt.String()).
|
||||
Str("backlog", backlog).
|
||||
Str("completion", completion).
|
||||
Msgf("tl;dr")
|
||||
p.b.Send(r.Conn, bot.Message, r.Msg.Channel, completion)
|
||||
return true
|
||||
}
|
||||
|
||||
func (p *TLDRPlugin) getClient() (*openai.Client, error) {
|
||||
token := p.c.Get("gpt.token", "")
|
||||
if token == "" {
|
||||
return nil, fmt.Errorf("no GPT token given")
|
||||
}
|
||||
return openai.NewClient(token)
|
||||
}
|
||||
|
|
|
@ -68,8 +68,8 @@ func TestDoubleUp(t *testing.T) {
|
|||
func TestAddHistoryLimitsMessages(t *testing.T) {
|
||||
c, _ := setup(t)
|
||||
max := 1000
|
||||
c.bot.Config().Set("TLDR.HistorySize", strconv.Itoa(max))
|
||||
c.bot.Config().Set("TLDR.KeepHours", "24")
|
||||
c.b.Config().Set("TLDR.HistorySize", strconv.Itoa(max))
|
||||
c.b.Config().Set("TLDR.KeepHours", "24")
|
||||
t0 := time.Now().Add(-24 * time.Hour)
|
||||
for i := 0; i < max*2; i++ {
|
||||
hist := history{
|
||||
|
@ -86,8 +86,8 @@ func TestAddHistoryLimitsDays(t *testing.T) {
|
|||
c, _ := setup(t)
|
||||
hrs := 24
|
||||
expected := 24
|
||||
c.bot.Config().Set("TLDR.HistorySize", "100")
|
||||
c.bot.Config().Set("TLDR.KeepHours", strconv.Itoa(hrs))
|
||||
c.b.Config().Set("TLDR.HistorySize", "100")
|
||||
c.b.Config().Set("TLDR.KeepHours", strconv.Itoa(hrs))
|
||||
t0 := time.Now().Add(-time.Duration(hrs*2) * time.Hour)
|
||||
for i := 0; i < 48; i++ {
|
||||
hist := history{
|
||||
|
|
Loading…
Reference in New Issue